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LETTER TO THE EDITOR 

New relations between the monomer-dimer and the 
Yang-Lee models 

Yonathan Shapir 
Department of Physics and Materials Research Laboratory, University of Illinois at 
Urbana-Champaign, 11 10 W Green Street, Urbana, Illinois 61801, USA 

Received 12 May 1982 

Abstract. A Hamiltonian approach to the monomer4imer model is derived by a special 
truncation of the spin operators in the Yang-Lee model. At its critical point, the negative 
fugacity dimer problem is proved to belong to the universality class of the Yang-Lee 
singularity as previously conjectured. 

Recently there has been a new interest in critical behaviour in the presence of a purely 
imaginary symmetry-breaking field (see, for example, Fisher (1980) and references 
therein). The singularity corresponds to an accumulation of zeros of the partition 
function for T > T, and near a critical value of the field, the so-called Yang-Lee (YL) 
edge (Yang and Lee 1952). 

In addition to new analytical results (Bessis et a1 1976, Baker et a1 1979, Fisher 
1980) and new accuracy in determining the critical exponent (Kurtze and Fisher 1979, 
de Alcantara Bonfim et a1 1980, Jullien et a1 1981, Uzelac and Jullien 1981), relations 
to the behaviour of other systems near criticality have been also obtained. These 
include branched dilute polymers (animals) in d + 2 dimensions (Parisi and Sourlas 
1981) and electronic localisation in a random potential near d = 8 (Lubensky and 
McKane 1981). For the localisation problem, the behaviour near the mobility edge 
has been more explicitly related to the YL edge singularity in the one-dimensional 
case (Kapitulnik and Shapir unpublished). 

A few years ago, another model was conjectured to share the same critical 
behaviour, namely the monomer4imer (MD) model with negative dimer fugacity 
(Kurtze and Fisher 1979, Baker and Moussa 1978). This conjecture implicitly assumes 
that the YL model is not driven away from its universality class in the extreme 
high-temperature limit. Based on this assumption, a calculation of the YL exponent 
was performed using the MD fugacity expansion (Kurtze and Fisher 1979, Gaunt 
1969), achieving good agreement with the results obtained by other methods (Kortman 
and Griffiths 1971, Fisher 1978). 

The purpose of the present communication is to relate these two models in their 
Hamiltonian formulations and to show that indeed their critical behaviours are 
described by the same field theory, at least near the upper critical dimensionality d ,  = 6. 

We start by deriving the Hamiltonian formulation of the MD model from a 
truncated version of the spin model. The YL Ising model is represented by the following 
reduced Hamiltonian: 

- p&P = K SiSi + iH Si, sj = *l ,  (1) 
(ii) I 
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and the sum is over nearest-neighbour sites on a d-dimensional lattice. For K < K,  
at the critical value of the field H,(K), the density of zeros g ( H )  has a branch cut 
singularity (Yang and Lee 1952), 

g(H)=W-Hc(K)I" ,  H a Hc, (2) 

and g ( H )  vanishes for 0 < H < H,. 
This being a single scaling-field theory, all other exponents are related to (+ 

(Fisher 1978). It is plausible to assume that H J K )  is a monotonic non-increasing 
function of K. This is confirmed by exact solutions for d = 1 (Yang and Lee 1952), 
d =a (Baker and Moussa 1978) and from series expansions for d = 2  and d = 3  
(Kortman and Griffiths 1971). Near the critical point K = K,, H,  = 0, this follows 
from scaling arguments which give the actual dependence of H on K in the critical 
range (Suzuki 1976). In the high-temperature limit K + 0, H,  approaches 7r/2 from 
below. If this limit is taken with z = tanh K t g 2 H  remaining fixed, only the shortest 
'strings' survive in the diagrammatic expansion (Kurtze and Fisher 1979). The partition 
function is, in that limit, equivalent to the generating function G ( - z )  for the number 
of configurations ( n k )  for k hard rods (dimers) with negative fugacity -2: 

In order to generate the MD Hamiltonian from the spin model, we first choose to 
approach the YL critical line H,(K) along the straight line H = c K  (c-coordination 
number). Due to their respective monotonicity properties the two lines cross at a 
single point. Along this line the Hamiltonian (1) reads 

in terms of the new variables T~ = 1 - isi. 

properties: 
We next define operators aj  by a 'truncated' version of T~ with the following trace 

@a, b )  2 2 Tr aj = Tr T~ = 2, T r a i  =TrTi  =0, 

Tra:=O for k z 3. ( 5 c )  

The last requirement (5c) is a constraint not fulfilled by the T+ It is easy to see that 
the Hamiltonian (4) written in terms of the Uj  is the required MD Hamiltonian. By 
expanding the partition function, 

and using ( 5 )  we obtain the generating function (3). This function may also be expressed 
in terms of bilinear forms of anticommuting (Grassmann) variables with the appropriate 
measure (Samuel 1980). 

From our simple Hamiltonian approach the field theory of the MD model can be 
constructed using the identity 
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where Aij = 1 if i and j are nearest neighbours and vanishes otherwise and N is the 
number of sites. The trace over the a’s may be performed, giving 

Neglecting fluctuations, G(-z) is proportional to exp[-Nro(&)]. The zero-loop 
approximation of the potential in the thermodynamic limit is (up to a constant) 

r,,(,$) = - (1 /2c~) ,$~+ln(1  +$I, (9) 

where 

& = $[l - (1 -4CZ)’/*] 

is the solution of the saddle-point equation 

By substituting 4 = ,$ + JI and expanding A,’ in terms of gradients one obtains the 
effective Lagrangian for this model: 

L[JI]=;rJ12+;(vJI)2+-JI g 3 u  + - J 1 4 + .  . . * 
3! 4! 

The quartic term has the correct stability sign and higher terms are irrelevant. 
The mean-field critical point is at 

r-[l/zc+(,$/zc)2]=0 (13a) 
or 

zco = 1/4c 

(and so the transition is absent for positive fugacity). The 4b3 interaction has an 
imaginary coupling-constant, 

g - ( , $ / z c ) ~ ,  (14) 

reproducing the Yang-Lee field theory (Fisher 1978). 
We have thus proved that both models are in the same universality class and have 

the same critical properties near the upper critical dimensionality d,  = 6. The situation 
at lower dimensionalities depends crucially on the anomalous dimensions of other 
operators near the non-trivial fixed point. A recent investigation (Fucito and Parisi 
1981) for another (tensorial) 43 theory, namely the q-state Potts model, shows that 
other operators may become relevant at lower dimensionalities. If it is the case for 
the present field theory, further analyses have to be performed to answer the question 
of whether these two models share the same asymptotic singular behaviour in any 
dimensionality. 

I am indebted to E Fradkin for useful discussions, to P Muzikar, M Wortis and 
especially to Michael Ma for a critical reading of the manuscript. This work was 
supported by the National Science Foundation under Grant No DMR-80-20250. 
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Note added in proof. In 4-15 dimensions the irrelevance of the most dangerous operators near the fixed 
point was shown (Kirkham and Wallace 1979). 
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